Resources
Sources and Recommended Books
Research Articles
Frontal Resources
Working Memory
Cabbage, K., Brinkley, S., Gray, S., Alt, M., Cowan, N., Green, S., Kuo, T., & Hogan, T. P. (2017). Assessing working memory in children: The comprehensive assessment battery for children – Working memory (CABC-WM). Journal of Visualized Experiments, 124, 55121.
https://doi.org/10.3791/55121
Ma, L., Chang, L., Chen, X., & Zhou, R. (2017). Working memory test battery for young adults: Computerized working memory assessment. PLOS ONE, 12(3), e0175047.
https://doi.org/10.1371/journal.pone.0175047
Alloway, T. P., Gathercole, S. E., & Elliott, J. (2010). Examining the link between working memory behaviour and academic attainment in children with ADHD: Working Memory and Academic Attainment in ADHD. Developmental Medicine & Child Neurology, 52(7),
632–636. https://doi.org/10.1111/j.1469-8749.2009.03603.x
Fried, R., Chan, J., Feinberg, L., Pope, A., Woodworth, K. Y., Faraone, S. V., & Biederman, J. (2016). Clinical correlates of working memory deficits in youth with and without ADHD: A controlled study. Journal of Clinical and Experimental Neuropsychology, 38(5), 487–496. https://doi.org/10.1080/13803395.2015.1127896
Bahmani, Z., Clark, K., Merrikhi, Y., Mueller, A., Pettine, W., Isabel Vanegas, M., Moore, T., & Noudoost, B. (2019). Prefrontal contributions to attention and working memory. Current Topics in Behavioral Neurosciences, 41, 129–153. https://doi.org/10.1007/7854_2018_74
Noyce, A. L., Lefco, R. W., Brissenden, J. A., Tobyne, S. M., Shinn-Cunningham, B. G., & Somers, D. C. (2021). Extended frontal networks for visual and auditory working memory. Cerebral Cortex (New York, NY), 32(4), 855–869. https://doi.org/10.1093/cercor/bhab249
Facial Tone
Guntinas-Lichius, O., Volk, G. F., Olsen, K. D., Mäkitie, A. A., Silver, C. E., Zafereo, M. E., Rinaldo, A., Randolph, G. W., Simo, R., Shaha, A. R., Vander Poorten, V., & Ferlito, A. (2020). Facial nerve electrodiagnostics for patients with facial palsy: A clinical practice guideline. European Archives of Oto-Rhino-Laryngology, 277(7), 1855–1874. https://doi.org/10.1007/s00405-020-05949-1
Andresen, N. S., Zhu, V., Lee, A., Sebetka, W., Kimura, J., Hansen, M. R., Gantz, B. J., & Sun, D. Q. (2020). Electrodiagnostic testing in acute facial palsy: Outcomes and comparison of methods. Laryngoscope Investigative Otolaryngology, 5(5), 928–935. https://doi.org/10.1002/lio2.458
Fabricius, J., Kothari, S. F., & Kothari, M. (2021). Assessment and rehabilitation interventions for central facial palsy in patients with acquired brain injury: A systematic review. Brain Injury, 35(5), 511–519. https://doi.org/10.1080/02699052.2021.1890218
Tramontano, M., Morone, G., LA Greca, F. M., Marchegiani, V., Palomba, A., Iosa, M., Musto, G., & Simonelli, M. (2021). Sunnybrook Facial Grading System reliability in subacute stroke patients. European Journal of Physical and Rehabilitation Medicine, 57(5), 685–690. https://doi.org/10.23736/S1973-9087.21.06629-6
Paolucci, T., Cardarola, A., Colonnelli, P., Ferracuti, G., Gonnella, R., Murgia, M., Santilli, V., Paoloni, M., Bernetti, A., Agostini, F., & Mangone, M. (2020). Give me a kiss! An integrative rehabilitative training program with motor imagery and mirror therapy for recovery of facial palsy. European Journal of Physical and Rehabilitation Medicine, 56(1), 58–67. https://doi.org/10.23736/S1973-9087.19.05757-5
Rösler, K. M., Hess, C. W., & Schmid, U. D. (1989). Investigation of facial motor pathways by electrical and magnetic stimulation: Sites and mechanisms of excitation. Journal of Neurology, Neurosurgery, and Psychiatry, 52(10), 1149–1156. https://doi.org/10.1136/jnnp.52.10.1149
Bhardwaj, N., & Yadala, S. (2023). Neuroanatomy, corticobulbar tract. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK555891/
Primitive Reflexes
Kalemba, A., Lorent, M., Blythe, S. G., & Gieysztor, E. (2023). The correlation between residual primitive reflexes and clock reading difficulties in school-aged children—A pilot study. International Journal of Environmental Research and Public Health, 20(3), 2322. https://doi.org/10.3390/ijerph20032322
Gieysztor, E. Z., Choińska, A. M., & Paprocka-Borowicz, M. (2018). Persistence of primitive reflexes and associated motor problems in healthy preschool children. Archives of Medical Science : AMS, 14(1), 167–173. https://doi.org/10.5114/aoms.2016.60503
Capute, A. J., Accardo, P. J., Vining, E. P., Rubenstein, J. E., Walcher, J. R., Harryman, S., & Ross, A. (1978). Primitive reflex profile. A pilot study. Physical Therapy, 58(9), 1061–1065. https://doi.org/10.1093/ptj/58.9.1061
Damasceno, A., Delicio, A. M., Mazo, D. F. C., Zullo, J. F. D., Scherer, P., Ng, R. T. Y., & Damasceno, B. P. (2005). Primitive reflexes and cognitive function. Arquivos De Neuro-Psiquiatria, 63(3A), 577–582. https://doi.org/10.1590/s0004-282×2005000400004
Schott, J. M., & Rossor, M. N. (2003). The grasp and other primitive reflexes. Journal of Neurology, Neurosurgery, and Psychiatry, 74(5), 558–560. https://doi.org/10.1136/jnnp.74.5.558
Yoo, H., & Mihaila, D. M. (2023). Rooting reflex. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK557636/
Hyperreflexia
Lin-Wei, O., Xian, L. L. S., Shen, V. T. W., Chuan, C. Y., Halim, S. A., Ghani, A. R. I., Idris, Z., & Abdullah, J. M. (2021). Deep tendon reflex: The tools and techniques. What surgical neurology residents should know. The Malaysian Journal of Medical Sciences : MJMS, 28(2), 48–62. https://doi.org/10.21315/mjms2021.28.2.5
Nick, J. M. (2003). Deep tendon reflexes: The what, why, where, and how of tapping. Journal of Obstetric, Gynecologic, and Neonatal Nursing: JOGNN, 32(3), 297–306. https://doi.org/10.1177/0884217503253491
Rodriguez-Beato, F. Y., & De Jesus, O. (2023). Physiology, deep tendon reflexes. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK562238/
Manschot, S., Van Passel, L., Buskens, E., Algra, A., & Van Gijn, J. (1998). Mayo and NINDS scales for assessment of tendon reflexes: Between observer agreement and implications for communication. Journal of Neurology, Neurosurgery & Psychiatry, 64(2), 253–255. https://doi.org/10.1136/jnnp.64.2.253
Dual Tasking
Sakai, K., Ramnani, N., & Passingham, R. E. (2002). Learning of sequences of finger movements and timing: Frontal lobe and action-oriented representation. Journal of Neurophysiology, 88(4), 2035–2046. https://doi.org/10.1152/jn.2002.88.4.2035
Montero-Odasso, M., Casas, A., Hansen, K. T., Bilski, P., Gutmanis, I., Wells, J. L., & Borrie, M. J. (2009). Quantitative gait analysis under dual-task in older people with mild cognitive impairment: A reliability study. Journal of Neuroengineering and Rehabilitation, 6, 35. https://doi.org/10.1186/1743-0003-6-35
Stephens, J., Nicholson, R., Slomine, B., & Suskauer, S. (2018). Development and pilot testing of the dual task screen in healthy adolescents. The American Journal of Occupational Therapy, 72(3), 7203345020p1-7203345020p6. https://doi.org/10.5014/ajot.2018.025361
Almajid, R., & Goel, R. (2022). Assessment of dual-tasking during a dynamic balance task using a smartphone app: A pilot study. Journal of Physical Therapy Science, 34(2), 115–121. https://doi.org/10.1589/jpts.34.115
Abasıyanık, Z., Veldkamp, R., Fostier, A., Van Goubergen, C., Kalron, A., & Feys, P. (2022). Patient-reported outcome measures for assessing dual-task performance in daily life: A review of current instruments, use, and measurement properties. International Journal of Environmental Research and Public Health, 19(22), 15029. https://doi.org/10.3390/ijerph192215029
Mirelman, A., Maidan, I., Bernad-Elazari, H., Nieuwhof, F., Reelick, M., Giladi, N., & Hausdorff, J. M. (2014). Increased frontal brain activation during walking while dual tasking: An fNIRS study in healthy young adults. Journal of Neuroengineering and Rehabilitation, 11, 85. https://doi.org/10.1186/1743-0003-11-85
Chaparro, G., Balto, J. M., Sandroff, B. M., Holtzer, R., Izzetoglu, M., Motl, R. W., & Hernandez, M. E. (2017). Frontal brain activation changes due to dual-tasking under partial body weight support conditions in older adults with multiple sclerosis. Journal of NeuroEngineering and Rehabilitation, 14, 65. https://doi.org/10.1186/s12984-017-0280-8
Di Lazzaro, G., Ricci, M., Al-Wardat, M., Schirinzi, T., Scalise, S., Giannini, F., … Pisani, A. (2019). Technology-Based Objective Measures Detect Subclinical Axial Signs in Untreated, de novo Parkinson’s Disease. Journal of Parkinson’s Disease, 1–10. doi:10.3233/jpd-191758
Pull Test & Arm Swing
Tan, J., Thevathasan, W., McGinley, J., Brown, P., & Perera, T. (2019). An instrumented pull test to characterize postural responses. Journal of Visualized Experiments: JoVE, 146. https://doi.org/10.3791/59309
Hunt, A. L., & Sethi, K. D. (2006). The pull test: A history. Movement Disorders: Official Journal of the Movement Disorder Society, 21(7), 894–899. https://doi.org/10.1002/mds.20925
Nonnekes, J., Goselink, R., Weerdesteyn, V., & Bloem, B. R. (2015). The retropulsion test: A good evaluation of postural instability in Parkinson’s disease? Journal of Parkinson’s Disease, 5(1), 43–47. https://doi.org/10.3233/JPD-140514
Visser, M., Marinus, J., Bloem, B. R., Kisjes, H., van den Berg, B. M., & van Hilten, J. J. (2003). Clinical tests for the evaluation of postural instability in patients with parkinson’s disease. Archives of Physical Medicine and Rehabilitation, 84(11), 1669–1674. https://doi.org/10.1053/s0003-9993(03)00348-4
Solopova, I. A., Kazennikov, O. V., Deniskina, N. B., Levik, Y. S., & Ivanenko, Y. P. (2003). Postural instability enhances motor responses to transcranial magnetic stimulation in humans. Neuroscience Letters, 337(1), 25–28. https://doi.org/10.1016/s0304-3940(02)01297-1
Wang, Q., Yu, M., Yan, L., Xu, J., Wang, Y., Zhou, G., & Liu, W. (2023). Altered functional connectivity of the primary motor cortex in tremor dominant and postural instability gait difficulty subtypes of early drug-naive Parkinson’s disease patients. Frontiers in Neurology, 14, 1151775. https://doi.org/10.3389/fneur.2023.1151775
Hypomimia
Pegolo, E., Volpe, D., Cucca, A., Ricciardi, L., & Sawacha, Z. (2022). Quantitative evaluation of hypomimia in parkinson’s disease: A face tracking approach. Sensors (Basel, Switzerland), 22(4), 1358. https://doi.org/10.3390/s22041358
Su, G., Lin, B., Yin, J., Luo, W., Xu, R., Xu, J., & Dong, K. (2021). Detection of hypomimia in patients with Parkinson’s disease via smile videos. Annals of Translational Medicine, 9(16), 1307. https://doi.org/10.21037/atm-21-3457
Gunnery, S. D., Naumova, E. N., Saint-Hilaire, M., & Tickle-Degnen, L. (2017). Mapping spontaneous facial expression in people with Parkinson’s disease: A multiple case study design. Cogent Psychology, 4, 1376425. https://doi.org/10.1080/23311908.2017.1376425
Maycas-Cepeda, T., López-Ruiz, P., Feliz-Feliz, C., Gómez-Vicente, L., García-Cobos, R., Arroyo, R., & García-Ruiz, P. J. (2021). Hypomimia in parkinson’s disease: What is it telling us? Frontiers in Neurology, 11, 603582. https://doi.org/10.3389/fneur.2020.603582
Xu, P., Chen, A., Li, Y., Xing, X., & Lu, H. (2019). Medial prefrontal cortex in neurological diseases. Physiological Genomics, 51(9), 432–442. https://doi.org/10.1152/physiolgenomics.00006.2019
Trujillo, P., van Wouwe, N. C., Lin, Y.-C., Stark, A. J., Petersen, K. J., Kang, H., Zald, D. H., Donahue, M. J., & Claassen, D. O. (2019). Dopamine effects on frontal cortical blood flow and motor inhibition in parkinson’s disease. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 115, 99–111. https://doi.org/10.1016/j.cortex.2019.01.016
Saccades
Nyström, M., Hooge, I., & Andersson, R. (2016). Pupil size influences the eye-tracker signal during saccades. Vision Research, 121, 95–103. https://doi.org/10.1016/j.visres.2016.01.009
Shanidze, N., Ghahghaei, S., & Verghese, P. (2016). Accuracy of eye position for saccades and smooth pursuit. Journal of Vision, 16(15), 23. https://doi.org/10.1167/16.15.23
Terao, Y., Fukuda, H., Sugiyama, Y., Inomata-Terada, S., Tokushige, S.-I., Hamada, M., & Ugawa, Y. (2018). Recording horizontal saccade performances accurately in neurological patients using electro-oculogram. Journal of Visualized Experiments: JoVE, 133, 56934. https://doi.org/10.3791/56934
Houben, M. M. J., Goumans, J., & van der Steen, J. (2006). Recording three-dimensional eye movements: Scleral search coils versus video oculography. Investigative Ophthalmology & Visual Science, 47(1), 179–187. https://doi.org/10.1167/iovs.05-0234
Salvia, E., Harvey, M., Nazarian, B., & Grosbras, M. H. (2020). Social perception drives eye-movement related brain activity: Evidence from pro- and anti-saccades to faces. Neuropsychologia, 139, 107360. https://doi.org/10.1016/j.neuropsychologia.2020.107360
Funahashi, S. (2014). Saccade-related activity in the prefrontal cortex: Its role in eye movement control and cognitive functions. Frontiers in Integrative Neuroscience, 8. https://doi.org/10.3389/fnint.2014.00054
Olfaction
Dan, X., Wechter, N., Gray, S., Mohanty, J. G., Croteau, D. L., & Bohr, V. A. (2021). Olfactory dysfunction in aging and neurodegenerative diseases. Ageing Research Reviews, 70, 101416. https://doi.org/10.1016/j.arr.2021.101416
Özay, H., Çakır, A., & Ecevit, M. C. (2019). Retronasal olfaction test methods: A systematic review. Balkan Medical Journal, 36(1), 49–59. https://doi.org/10.4274/balkanmedj.2018.0052
Zarachi, A., Lianou, A. D., Pezoulas, V., Komnos, I., Milionis, O., Fotiadis, D., Milionis, H., Kastanioudakis, I. G., & Liontos, A. (n.d.). Visual analogue scale for the evaluation of olfactory and gustatory dysfunction of covid-19 patients in northwestern greece. Cureus, 15(3), e36413. https://doi.org/10.7759/cureus.36413
De Sousa Machado, A., Sousa, F., Silva, A., & Meireles, L. (n.d.). Visual analog scale and olfactory objective tests in hyposmia patients: Is there a link? Cureus, 15(2), e34712. https://doi.org/10.7759/cureus.34712
Leboucq, N., Menjot de Champfleur, N., Menjot de Champfleur, S., & Bonafé, A. (2013). The olfactory system. Diagnostic and Interventional Imaging, 94(10), 985–991. https://doi.org/10.1016/j.diii.2013.06.006
Yus, M., Matias-Guiu, J. A., Gil-Martínez, L., Gómez-Ruiz, N., Polidura, C., Jorquera, M., Delgado-Alonso, C., Díez-Cirarda, M., Matías-Guiu, J., & Arrazola, J. (2022). Persistent olfactory dysfunction after COVID-19 is associated with reduced perfusion in the frontal lobe. Acta Neurologica Scandinavica, 146(2), 194–198. https://doi.org/10.1111/ane.13627
Finger Movements
Emos, M. C., & Rosner, J. (2023). Neuroanatomy, upper motor nerve signs. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK541082/
Mayer, N. H., & Esquenazi, A. (2003). Muscle overactivity and movement dysfunction in the upper motoneuron syndrome. Physical Medicine and Rehabilitation Clinics of North America, 14(4), 855–883, vii–viii. https://doi.org/10.1016/s1047-9651(03)00093-7
Weiner, M. F., Hynan, L. S., Rossetti, H., & Falkowski, J. (2011). Luria’s three-step test: What is it and what does it tell us? International Psychogeriatrics / Ipa, 23(10), 1602–1606. https://doi.org/10.1017/S1041610211000767
Beatty, W. W., & Monson, N. (1990). Picture and motor sequencing in Parkinson’s disease. Journal of Geriatric Psychiatry and Neurology, 3(4), 192–197. https://doi.org/10.1177/089198879000300403
Opara, J., Małecki, A., Małecka, E., & Socha, T. (2017). Motor assessment in Parkinson’s disease. Annals of Agricultural and Environmental Medicine: AAEM, 24(3), 411–415. https://doi.org/10.5604/12321966.1232774
Goetz, C. G., Tilley, B. C., Shaftman, S. R., Stebbins, G. T., Fahn, S., Martinez-Martin, P., Poewe, W., Sampaio, C., Stern, M. B., Dodel, R., Dubois, B., Holloway, R., Jankovic, J., Kulisevsky, J., Lang, A. E., Lees, A., Leurgans, S., LeWitt, P. A., Nyenhuis, D., … Movement Disorder Society UPDRS Revision Task Force. (2008). Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (Mds-updrs): Scale presentation and clinimetric testing results. Movement Disorders: Official Journal of the Movement Disorder Society, 23(15), 2129–2170. https://doi.org/10.1002/mds.22340
Drag, L. L., Bieliauskas, L. A., Kaszniak, A. W., Bohnen, N. I., & Glisky, E. L. (2009). Source memory and frontal functioning in Parkinson’s disease. Journal of the International Neuropsychological Society : JINS, 15(3), 399–406. https://doi.org/10.1017/S1355617709090572
Spasticity
Biering-Sørensen, F., Nielsen, J. B., & Klinge, K. (2006). Spasticity-assessment: A review. Spinal Cord, 44(12), 708–722. https://doi.org/10.1038/sj.sc.3101928
Rekand, T. (2010). Clinical assessment and management of spasticity: A review. Acta Neurologica Scandinavica. Supplementum, 190, 62–66. https://doi.org/10.1111/j.1600-0404.2010.01378.x
Thibaut, A., Chatelle, C., Ziegler, E., Bruno, M.-A., Laureys, S., & Gosseries, O. (2013). Spasticity after stroke: Physiology, assessment and treatment. Brain Injury, 27(10), 1093–1105. https://doi.org/10.3109/02699052.2013.804202
Hugos, C. L., & Cameron, M. H. (2019). Assessment and measurement of spasticity in ms: State of the evidence. Current Neurology and Neuroscience Reports, 19(10), 79. https://doi.org/10.1007/s11910-019-0991-2
Centonze, D., Koch, G., Versace, V., Mori, F., Rossi, S., Brusa, L., Grossi, K., Torelli, F., Prosperetti, C., Cervellino, A., Marfia, G. A., Stanzione, P., Marciani, M. G., Boffa, L., & Bernardi, G. (2007). Repetitive transcranial magnetic stimulation of the motor cortex ameliorates spasticity in multiple sclerosis. Neurology, 68(13), 1045–1050. https://doi.org/10.1212/01.wnl.0000257818.16952.62
Molero-Chamizo, A., Salas Sánchez, Á., Álvarez Batista, B., Cordero García, C., Andújar Barroso, R., Rivera-Urbina, G. N., Nitsche, M. A., & Alameda Bailén, J. R. (2021). Bilateral motor cortex tdcs effects on post-stroke pain and spasticity: A three cases study. Frontiers in Pharmacology, 12, 624582. https://doi.org/10.3389/fphar.2021.624582
Parietal Resources
Sensory Extinction
Kamtchum-Tatuene, J., Allali, G., Saj, A., Bernati, T., Sztajzel, R., Pollak, P., Momjian-Mayor, I., & Kleinschmidt, A. (2017). An exploratory cohort study of sensory extinction in acute stroke: Prevalence, risk factors, and time course. Journal of Neural Transmission, 124(4), 483–494. https://doi.org/10.1007/s00702-016-1663-x
Kluger, B. M., Meador, K. J., Garvan, C. W., Loring, D. W., Townsend, D. T., & Heilman, K. M. (2008). A test of the mechanisms of sensory extinction to simultaneous stimulation. Neurology, 70(18), 1644–1645. https://doi.org/10.1212/01.wnl.0000310988.11575.fa
Kasner, S. E. (2006). Clinical interpretation and use of stroke scales. The Lancet. Neurology, 5(7), 603–612. https://doi.org/10.1016/S1474-4422(06)70495-1
Basagni, B., Hakiki, B., Campagnini, S., Salvadori, E., Grippo, A., Paperini, A., Castagnoli, C., Hochleitner, I., Politi, A. M., Gemignani, P., Mosca, I. E., Franceschini, A., Bonotti, E. B., Sodero, A., Mannini, A., Pellicciari, L., Poggesi, A., Macchi, C., Carrozza, M. C., & Cecchi, F. (2021). Critical issue on the extinction and inattention subtest of NIHSS scale: An analysis on post-acute stroke patients attending inpatient rehabilitation. BMC Neurology, 21, 475. https://doi.org/10.1186/s12883-021-02499-9
Berlucchi, G., & Vallar, G. (2018). The history of the neurophysiology and neurology of the parietal lobe. Handbook of Clinical Neurology, 151, 3–30. https://doi.org/10.1016/B978-0-444-63622-5.00001-2
Point Localization
Bell-Krotoski, J., Weinstein, S., & Weinstein, C. (1993). Testing sensibility, including touch-pressure, two-point discrimination, point localization, and vibration. Journal of Hand Therapy: Official Journal of the American Society of Hand Therapists, 6(2), 114–123. https://doi.org/10.1016/s0894-1130(12)80292-4
Ylioja, S., Pertovaara, A., Koivisto, J., Korvenoja, A., Artchakov, D., & Carlson, S. (2004). The effect of interstimulus interval on somatosensory point localization. Somatosensory & Motor Research, 21(1), 3–7. https://doi.org/10.1080/0899022042000201245
Suda, M., Kawakami, M., Okuyama, K., Ishii, R., Oshima, O., Hijikata, N., Nakamura, T., Oka, A., Kondo, K., & Liu, M. (2021). Validity and reliability of the semmes-weinstein monofilament test and the thumb localizing test in patients with stroke. Frontiers in Neurology, 11, 625917. https://doi.org/10.3389/fneur.2020.625917
Rea, P. (2015). Spinal tracts – ascending/sensory pathways. Essential Clinical Anatomy of the Nervous System, 133–160. https://doi.org/10.1016/B978-0-12-802030-2.00008-X
Stereognosis
Talmasov, D., & Ropper, A. H. (2016). Tactile asymbolia. Journal of Clinical Neuroscience: Official Journal of the Neurosurgical Society of Australasia, 26, 164–165. https://doi.org/10.1016/j.jocn.2015.10.021
Deshpande, N., Metter, E. J., & Ferrucci, L. (2010). Validity of clinically derived cumulative somatosensory impairment index. Archives of Physical Medicine and Rehabilitation, 91(2), 226–232. https://doi.org/10.1016/j.apmr.2009.10.006
Harvie, D. S., Kelly, J., Buckman, H., Chan, J., Sutherland, G., Catley, M., Novak, J., Tuttle, N., & Sterling, M. (2017). Tactile acuity testing at the neck: A comparison of methods. Musculoskeletal Science & Practice, 32, 23–30. https://doi.org/10.1016/j.msksp.2017.07.007
Knecht, S., Kunesch, E., & Schnitzler, A. (1996). Parallel and serial processing of haptic information in man: Effects of parietal lesions on sensorimotor hand function. Neuropsychologia, 34(7), 669–687. https://doi.org/10.1016/0028-3932(95)00148-4
Dolberg, R., Hinkley, L. B. N., Honma, S., Zhu, Z., Findlay, A. M., Byl, N. N., & Nagarjan, S. S. (2011). Amplitude and timing of somatosensory cortex activity in task specific focal hand dystonia. Clinical Neurophysiology, 122(12), 2441–2451. https://doi.org/10.1016/j.clinph.2011.05.020
Gaubert, C. S., & Mockett, S. P. (2000). Inter-rater reliability of the Nottingham method of stereognosis assessment. Clinical Rehabilitation, 14(2), 153–159. https://doi.org/10.1191/026921500677422368
Petersen, E., Tomhave, W., Agel, J., Bagley, A., James, M., & Van Heest, A. (2016). The effect of treatment on stereognosis in children with hemiplegic cerebral palsy. The Journal of Hand Surgery, 41(1), 91–96. https://doi.org/10.1016/j.jhsa.2015.06.126
Kinnucan, E., Van Heest, A., & Tomhave, W. (2010). Correlation of motor function and stereognosis impairment in upper limb cerebral palsy. The Journal of Hand Surgery, 35(8), 1317–1322. https://doi.org/10.1016/j.jhsa.2010.04.019
Mulcahey, M. J., Kozin, S., Merenda, L., Gaughan, J., Tian, F., Gogola, G., James, M. A., & Ni, P. (2012). Evaluation of the box and blocks test, stereognosis and item banks of activity and upper extremity function in youths with brachial plexus birth palsy. Journal of Pediatric Orthopedics, 32 Suppl 2, S114-122. https://doi.org/10.1097/BPO.0b013e3182595423
Pursuits
Battelli, L., Alvarez, G. A., Carlson, T., & Pascual-Leone, A. (2009). The role of the parietal lobe in visual extinction studied with transcranial magnetic stimulation. Journal of Cognitive Neuroscience, 21(10), 1946–1955. https://doi.org/10.1162/jocn.2008.21149
Doettl, S. M., & McCaslin, D. L. (2018). Oculomotor assessment in children. Seminars in Hearing, 39(3), 275–287. https://doi.org/10.1055/s-0038-1666818
Thomas, N. M., Dewhurst, S., Bampouras, T. M., Donovan, T., Macaluso, A., & Vannozzi, G. (2017). Smooth pursuits decrease balance control during locomotion in young and older healthy females. Experimental Brain Research, 235(9), 2661–2668. https://doi.org/10.1007/s00221-017-4996-2
Komogortsev, O. V., & Karpov, A. (2013). Automated classification and scoring of smooth pursuit eye movements in the presence of fixations and saccades. Behavior Research Methods, 45(1), 203–215. https://doi.org/10.3758/s13428-012-0234-9
Kontos, A. P., Deitrick, J. M., Collins, M. W., & Mucha, A. (2017). Review of vestibular and oculomotor screening and concussion rehabilitation. Journal of Athletic Training, 52(3), 256–261. https://doi.org/10.4085/1062-6050-51.11.05
Sharpe, J. A. (2008). Neurophysiology and neuroanatomy of smooth pursuit: Lesion studies. Brain and Cognition, 68(3), 241–254. https://doi.org/10.1016/j.bandc.2008.08.015
Schröder, R., Kasparbauer, A.-M., Meyhöfer, I., Steffens, M., Trautner, P., & Ettinger, U. (2020). Functional connectivity during smooth pursuit eye movements. Journal of Neurophysiology, 124(6), 1839–1856. https://doi.org/10.1152/jn.00317.2020
Graphesthesia
Bell-Krotoski, J., Weinstein, S., & Weinstein, C. (1993). Testing sensibility, including touch-pressure, two-point discrimination, point localization, and vibration. Journal of Hand Therapy: Official Journal of the American Society of Hand Therapists, 6(2), 114–123. https://doi.org/10.1016/s0894-1130(12)80292-4
Ylioja, S., Pertovaara, A., Koivisto, J., Korvenoja, A., Artchakov, D., & Carlson, S. (2004). The effect of interstimulus interval on somatosensory point localization. Somatosensory & Motor Research, 21(1), 3–7. https://doi.org/10.1080/0899022042000201245
Suda, M., Kawakami, M., Okuyama, K., Ishii, R., Oshima, O., Hijikata, N., Nakamura, T., Oka, A., Kondo, K., & Liu, M. (2021). Validity and reliability of the semmes-weinstein monofilament test and the thumb localizing test in patients with stroke. Frontiers in Neurology, 11, 625917. https://doi.org/10.3389/fneur.2020.625917
Rea, P. (2015). Spinal tracts – ascending/sensory pathways. Essential Clinical Anatomy of the Nervous System, 133–160. https://doi.org/10.1016/B978-0-12-802030-2.00008-X
Hemineglect
Roland, P. E. (1976). Astereognosis. Tactile discrimination after localized hemispheric lesions in man. Archives of Neurology, 33(8), 543–550. https://doi.org/10.1001/archneur.1976.00500080021004
Unnithan, A. K. A., & Emmady, P. D. (2023). Astereognosis.StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK560773/
Albert, M. L. (1973). A simple test of visual neglect. Neurology, 23(6), 658–664. https://doi.org/10.1212/wnl.23.6.658
Kwon, S., Park, W., Kim, M., & Kim, J. M. (2020). Relationship between line bisection test time and hemispatial neglect prognosis in patients with stroke: A prospective pilot study. Annals of Rehabilitation Medicine, 44(4), 292–300. https://doi.org/10.5535/arm.19112
Chen, P., Chen, C. C., Hreha, K., Goedert, K. M., & Barrett, A. M. (2015). Kessler Foundation Neglect Assessment Process uniquely measures spatial neglect during activities of daily living. Archives of Physical Medicine and Rehabilitation, 96(5), 869-876.e1. https://doi.org/10.1016/j.apmr.2014.10.023
Nishida, D., Mizuno, K., Tahara, M., Shindo, S., Watanabe, Y., Ebata, H., & Tsuji, T. (2021). Behavioral assessment of unilateral spatial neglect with the catherine bergego scale (Cbs) using the kessler foundation neglect assessment process (Kf-nap) in patients with subacute stroke during rehabilitation in japan. Behavioural Neurology, 2021, 8825192. https://doi.org/10.1155/2021/8825192
Sarwar, A., & Emmady, P. D. (2023). Spatial neglect. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK562184/
Vallar, G., & Calzolari, E. (2018). Unilateral spatial neglect after posterior parietal damage. Handbook of Clinical Neurology, 151, 287–312. https://doi.org/10.1016/B978-0-444-63622-5.00014-0
Occipital Resources
Occipital Resources
Nayar, K., Voyles, A. C., Kiorpes, L., & Di Martino, A. (2017). Global and local visual processing in autism: An objective assessment approach. Autism Research: Official Journal of the International Society for Autism Research, 10(8), 1392–1404. https://doi.org/10.1002/aur.1782
Kooiker, M. J. G., van Gils, M. M., van der Zee, Y. J., Swarte, R. M. C., Smit, L. S., Loudon, S., van der Steen, S., Reiss, I. K. M., Pel, J. J. M., & van der Steen, J. (2021). Early screening of visual processing dysfunctions in children born very or extremely preterm. Frontiers in Human Neuroscience, 15, 729080. https://doi.org/10.3389/fnhum.2021.729080
Liston, D. B., & Stone, L. S. (2014). Oculometric assessment of dynamic visual processing. Journal of Vision, 14(14), 12. https://doi.org/10.1167/14.14.12
(*Several different assessments found)
Brown, T., & Elliott, S. (2011). Factor structure of the motor-free visual perception test-3rd edition(MVPT-3). Canadian Journal of Occupational Therapy. Revue Canadienne D’ergotherapie, 78(1), 26–36. https://doi.org/10.2182/cjot.2011.78.1.4
Auld, M., Boyd, R., Moseley, G. L., & Johnston, L. (2011). Seeing the gaps: A systematic review of visual perception tools for children with hemiplegia. Disability and Rehabilitation, 33(19–20), 1854–1865. https://doi.org/10.3109/09638288.2010.549896
Zeng, H., Fink, G. R., & Weidner, R. (2020). Visual size processing in early visual cortex follows lateral occipital cortex involvement. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 40(22), 4410–4417. https://doi.org/10.1523/JNEUROSCI.2437-19.2020
Kurcyus, K., Annac, E., Hanning, N. M., Harris, A. D., Oeltzschner, G., Edden, R., & Riedl, V. (2018). Opposite dynamics of gaba and glutamate levels in the occipital cortex during visual processing. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 38(46), 9967–9976. https://doi.org/10.1523/JNEUROSCI.1214-18.2018
Temporal Resources
Short Term Memory
Salis, C., Kelly, H., & Code, C. (2015). Assessment and treatment of short-term and working memory impairments in stroke aphasia: A practical tutorial. International Journal of Language & Communication Disorders, 50(6), 721–736. https://doi.org/10.1111/1460-6984.12172
Allen, C. M., Martin, R. C., & Martin, N. (2012). Relations between short-term memory deficits, semantic processing, and executive function. Aphasiology, 26(3–4), 428–461. https://doi.org/10.1080/02687038.2011.617436
Woods, D. L., Kishiyama, M. M., Yund, E. W., Herron, T. J., Edwards, B., Poliva, O., Hink, R. F., & Reed, B. (2011). Improving digit span assessment of short-term verbal memory. Journal of Clinical and Experimental Neuropsychology, 33(1), 101–111. https://doi.org/10.1080/13803395.2010.493149
Martin, R. C., Lesch, M. F., & Bartha, M. C. (1999). Independence of input and output phonology in word processing and short-term memory. Journal of Memory and Language, 41(1), 3–29. https://doi.org/10.1006/jmla.1999.2637
Das, S. R., Mancuso, L., Olson, I. R., Arnold, S. E., & Wolk, D. A. (2016). Short-term memory depends on dissociable medial temporal lobe regions in amnestic mild cognitive impairment. Cerebral Cortex (New York, N.Y.: 1991), 26(5), 2006–2017. https://doi.org/10.1093/cercor/bhv022
Wally, M. E., Nomoto, M., Abdou, K., Murayama, E., & Inokuchi, K. (2022). A short-term memory trace persists for days in the mouse hippocampus. Communications Biology, 5, 1168. https://doi.org/10.1038/s42003-022-04167-1
Changes in Affect
Snyderman, D., & Rovner, B. (2009). Mental status exam in primary care: A review. American Family Physician, 80(8), 809–814. https://pubmed.ncbi.nlm.nih.gov/19835342/
Voss, R. M., & M Das, J. (2023). Mental status examination. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK546682/
Martin, D. C. (1990). The mental status examination. In H. K. Walker, W. D. Hall, & J. W. Hurst (Eds.), Clinical Methods: The History, Physical, and Laboratory Examinations (3rd ed.). Butterworths. http://www.ncbi.nlm.nih.gov/books/NBK320/
Kirkpatrick, B., Strauss, G. P., Nguyen, L., Fischer, B. A., Daniel, D. G., Cienfuegos, A., & Marder, S. R. (2011). The brief negative symptom scale: Psychometric properties. Schizophrenia Bulletin, 37(2), 300–305. https://doi.org/10.1093/schbul/sbq059
Jin, W., Jie Feng, null, Wenwei Zhu, null, Bin Zhang, null, Chen, S., Wei, S., Wang, P., Deng, K., Wang, Y., Zhang, M., Yang, S., Im, H., & Wang, Q. (2022). The medial temporal lobe structure and function support positive affect. Neuropsychologia, 176, 108373. https://doi.org/10.1016/j.neuropsychologia.2022.108373
Helmstaedter, C., Sonntag-Dillender, M., Hoppe, C., & Elger, C. E. (2004). Depressed mood and memory impairment in temporal lobe epilepsy as a function of focus lateralization and localization. Epilepsy & Behavior: E&B, 5(5), 696–701. https://doi.org/10.1016/j.yebeh.2004.06.008
Upper Quadrant Vision
Spector, R. H. (1990). Visual fields. In H. K. Walker, W. D. Hall, & J. W. Hurst (Eds.), Clinical Methods: The History, Physical, and Laboratory Examinations (3rd ed.). Butterworths. http://www.ncbi.nlm.nih.gov/books/NBK220/
Sankar, P. S., O’Keefe, L., Choi, D., Salowe, R., Miller-Ellis, E., Lehman, A., Addis, V., Ramakrishnan, M., Natesh, V., Whitehead, G., Khachatryan, N., & O’Brien, J. (2017). The scheie visual field grading system. Journal of Clinical & Experimental Ophthalmology, 8(3), 651. https://doi.org/10.4172/2155-9570.1000651
Spilker, J., Kongable, G., Barch, C., Braimah, J., Brattina, P., Daley, S., Donnarumma, R., Rapp, K., & Sailor, S. (1997). Using the nih stroke scale to assess stroke patients. The ninds rt-pa stroke study group. The Journal of Neuroscience Nursing: Journal of the American Association of Neuroscience Nurses, 29(6), 384–392. https://doi.org/10.1097/01376517-199712000-00008
Monserrate, A. E., & De Jesus, O. (2023). Homonymous superior quadrantanopia. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK558982/
Van Lanen, R. H. G. J., Hoeberigs, M. C., Bauer, N. J. C., Haeren, R. H. L., Hoogland, G., Colon, A., Piersma, C., Dings, J. T. A., & Schijns, O. E. M. G. (2018). Visual field deficits after epilepsy surgery: A new quantitative scoring method. Acta Neurochirurgica, 160(7), 1325–1336. https://doi.org/10.1007/s00701-018-3525-9
Episodic Memory
Dikmen, S. S., Bauer, P. J., Weintraub, S., Mungas, D., Slotkin, J., Beaumont, J. L., Gershon, R., Temkin, N. R., & Heaton, R. K. (2014). Measuring episodic memory across the lifespan: Nih toolbox picture sequence memory test. Journal of the International Neuropsychological Society : JINS, 20(6), 611–619. https://doi.org/10.1017/S1355617714000460
Hale, C., Last, B. S., Meier, I. B., Yeung, L.-K., Budge, M., Sloan, R. P., Small, S. A., & Brickman, A. M. (2019). The modrey: An episodic memory test for nonclinical and preclinical populations. Assessment, 26(6), 1154–1161. https://doi.org/10.1177/1073191117723113
Khosravi Fard, E., L. Keelor, J., Akbarzadeh Bagheban, A., Keith, R., W. (2016). Comparison of the rey auditory verbal learning test (Ravlt) and digit test among typically achieving and gifted students. Iranian Journal of Child Neurology, 10(2), 26–37. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4885152/
Bauer, P. J., Leventon, J. S., & Varga, N. L. (2012). Neuropsychological assessment of memory in preschoolers. Neuropsychology Review, 22(4), 414–424. https://doi.org/10.1007/s11065-012-9219-9
Dickerson, B. C., & Eichenbaum, H. (2010). The episodic memory system: Neurocircuitry and disorders. Neuropsychopharmacology, 35(1), 86–104. https://doi.org/10.1038/npp.2009.126
Zammit, A. R., Ezzati, A., Zimmerman, M. E., Lipton, R. B., Lipton, M. L., & Katz, M. J. (2017). Roles of hippocampal subfields in verbal and visual episodic memory. Behavioural Brain Research, 317, 157–162. https://doi.org/10.1016/j.bbr.2016.09.038
Speech
Jennische, M., Sedin, G., Johnsen, B., & Sundelin, C. (1992). Assessment of speech and language skills in children. Upsala Journal of Medical Sciences, 97(3), 229–250. https://doi.org/10.3109/03009739209179298
Mornet, E., Coulombeau, B., Fayoux, P., Marie, J.-P., Nicollas, R., Robert-Rochet, D., & Marianowski, R. (2014). Assessment of chronic childhood dysphonia. European Annals of Otorhinolaryngology, Head and Neck Diseases, 131(5), 309–312. https://doi.org/10.1016/j.anorl.2013.02.001
Wannberg, P., Schalling, E., & Hartelius, L. (2016). Perceptual assessment of dysarthria: Comparison of a general and a detailed assessment protocol. Logopedics, Phoniatrics, Vocology, 41(4), 159–167. https://doi.org/10.3109/14015439.2015.1069889
Ruessink, M., van den Engel-Hoek, L., van Gerven, M., Spek, B., de Swart, B., & Kalf, J. (n.d.). Validation of the pediatric radboud dysarthria assessment. Journal of Pediatric Rehabilitation Medicine, 15(2), 299–310. https://doi.org/10.3233/PRM-190671
Binder, J. R., Frost, J. A., Hammeke, T. A., Bellgowan, P. S., Springer, J. A., Kaufman, J. N., & Possing, E. T. (2000). Human temporal lobe activation by speech and nonspeech sounds. Cerebral Cortex (New York, N.Y.: 1991), 10(5), 512–528. https://doi.org/10.1093/cercor/10.5.512
Komeilipoor, N., Cesari, P., & Daffertshofer, A. (2017). Involvement of superior temporal areas in audiovisual and audiomotor speech integration. Neuroscience, 343, 276–283. https://doi.org/10.1016/j.neuroscience.2016.03.047
Broadway, D. C., & Kyari, F. (2019). Examining visual fields. Community Eye Health, 32(107), 58–59. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7041825/
Hearing
Meneguello, J., Leonhardt, F. D., & Pereira, L. D. (2015). Auditory processing in patients with temporal lobe epilepsy. Brazilian Journal of Otorhinolaryngology, 72(4), 496–504. https://doi.org/10.1016/S1808-8694(15)30995-2
Lotfi, Y., Dastgerdi, Z. H., Farazi, M., Moossavi, A., & Bakhshi, E. (2020). Auditory temporal processing assessment in children with developmental stuttering. International Journal of Pediatric Otorhinolaryngology, 132, 109935. https://doi.org/10.1016/j.ijporl.2020.109935
Fischer, M. E., Cruickshanks, K. J., Nondahl, D. M., Klein, B. E., Klein, R., Pankow, J. S., Tweed, T. S., Dalton, D. S., & Paulsen, A. J. (2017). Dichotic digits test performance across the ages: Results from two large epidemiologic cohort studies. Ear and Hearing, 38(3), 314–320. https://doi.org/10.1097/AUD.0000000000000386
Kim, G. Y., Kim, H., Kim, H. J., Seo, S. W., Na, D. L., Nam, C. M., Ye, B. S., & Moon, I. J. (2022). Central auditory processing disorder in patients with amnestic mild cognitive impairment. Behavioural Neurology, 2022, 9001662. https://doi.org/10.1155/2022/9001662
Han, M. W., Ahn, J. H., Kang, J. K., Lee, E. M., Lee, J. H., Bae, J. H., & Chung, J. W. (2011). Central auditory processing impairment in patients with temporal lobe epilepsy. Epilepsy & Behavior: E&B, 20(2), 370–374. https://doi.org/10.1016/j.yebeh.2010.12.032
Grindle, C. R., O’Reilly, R. C., Morlet, T., & Finden, S. (2010). Central auditory processing deficiency with anatomic deficit in left superior temporal lobe. The Laryngoscope, 120(8), 1671–1674. https://doi.org/10.1002/lary.20986
Cerebellum Resources
Balance/Romberg
Forbes, J., Munakomi, S., & Cronovich, H. (2023). Romberg test. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK563187/
Lanska, D. J. (2002). The Romberg sign and early instruments for measuring postural sway. Seminars in Neurology, 22(4), 409–418. https://doi.org/10.1055/s-2002-36763
Murray, N., Salvatore, A., Powell, D., & Reed-Jones, R. (2014). Reliability and validity evidence of multiple balance assessments in athletes with a concussion. Journal of Athletic Training, 49(4), 540–549. https://doi.org/10.4085/1062-6050-49.3.32
Agrawal, Y., Carey, J. P., Hoffman, H. J., Sklare, D. A., & Schubert, M. C. (2011). The modified Romberg balance test: Normative data in US adults. Otology & Neurotology : Official Publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology, 32(8), 1309–1311. https://doi.org/10.1097/MAO.0b013e31822e5bee
Ataullah, A. H. M., & Naqvi, I. A. (2023). Cerebellar dysfunction. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK562317/
Morton, S. M., & Bastian, A. J. (2004). Cerebellar control of balance and locomotion. The Neuroscientist: A Review Journal Bringing Neurobiology, Neurology and Psychiatry, 10(3), 247–259. https://doi.org/10.1177/1073858404263517
DDK
Walker, H. K. (1990). The cerebellum. In H. K. Walker, W. D. Hall, & J. W. Hurst (Eds.), Clinical Methods: The History, Physical, and Laboratory Examinations (3rd ed.). Butterworths. http://www.ncbi.nlm.nih.gov/books/NBK392/
Bodranghien, F., Bastian, A., Casali, C., Hallett, M., Louis, E. D., Manto, M., Mariën, P., Nowak, D. A., Schmahmann, J. D., Serrao, M., Steiner, K. M., Strupp, M., Tilikete, C., Timmann, D., & van Dun, K. (2016). Consensus paper: Revisiting the symptoms and signs of cerebellar syndrome. Cerebellum (London, England), 15(3), 369–391. https://doi.org/10.1007/s12311-015-0687-3
Power, L., Pathirana, P., Horne, M., Milne, S., Marriott, A., & Szmulewicz, D. J. (2022). Instrumented objective clinical examination of cerebellar ataxia: The upper and lower limb-a review. Cerebellum (London, England), 21(1), 145–158. https://doi.org/10.1007/s12311-021-01253-8
Krishna, R., Pathirana, P. N., Horne, M., Power, L., & Szmulewicz, D. J. (2019). Quantitative assessment of cerebellar ataxia, through automated limb functional tests. Journal of Neuroengineering and Rehabilitation, 16(1), 31. https://doi.org/10.1186/s12984-019-0490-3
Alusi, S. H., Glickman, S., Patel, N., Worthington, J., & Bain, P. G. (2003). Target board test for the quantification of ataxia in tremulous patients. Clinical Rehabilitation, 17(2), 140–149. https://doi.org/10.1191/0269215503cr598oa
Trouillas, P., Takayanagi, T., Hallett, M., Currier, R. D., Subramony, S. H., Wessel, K., Bryer, A., Diener, H. C., Massaquoi, S., Gomez, C. M., Coutinho, P., Ben Hamida, M., Campanella, G., Filla, A., Schut, L., Timann, D., Honnorat, J., Nighoghossian, N., & Manyam, B. (1997). International cooperative ataxia rating scale for pharmacological assessment of the cerebellar syndrome. The ataxia neuropharmacology committee of the world federation of neurology. Journal of the Neurological Sciences, 145(2), 205–211. https://doi.org/10.1016/s0022-510x(96)00231-6
Rocha Cabrero, F., & De Jesus, O. (2023). Dysdiadochokinesia. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK559262/
Finger to Nose
Van Den Berg, K. R. E., & Helmich, R. C. (2021). The role of the cerebellum in tremor – evidence from neuroimaging. Tremor and Other Hyperkinetic Movements, 11, 49. https://doi.org/10.5334/tohm.660
Rodrigues, M. R. M., Slimovitch, M., Chilingaryan, G., & Levin, M. F. (2017). Does the Finger-to-Nose Test measure upper limb coordination in chronic stroke? Journal of NeuroEngineering and Rehabilitation, 14, 6. https://doi.org/10.1186/s12984-016-0213-y
Hypotonia
Leyenaar, J., Camfield, P., & Camfield, C. (2005). A schematic approach to hypotonia in infancy. Paediatrics & Child Health, 10(7), 397–400. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2722561/
Larson, S. T., & Wilbur, J. (2020). Muscle weakness in adults: Evaluation and differential diagnosis. American Family Physician, 101(2), 95–108. https://pubmed.ncbi.nlm.nih.gov/31939642/
Malak, R., Kotwicka, M., Krawczyk-Wasielewska, A., Mojs, E., & Samborski, W. (2013). Motor skills, cognitive development and balance functions of children with Down syndrome. Annals of Agricultural and Environmental Medicine: AAEM, 20(4), 803–806. https://pubmed.ncbi.nlm.nih.gov/24364457/
Govender, P., & Joubert, R. W. E. (2018). Evidence-based clinical algorithm for hypotonia assessment: To pardon the errs. Occupational Therapy International, 2018, 8967572. https://doi.org/10.1155/2018/8967572
Intentional Tremor
Javalkar, V., Khan, M., & Davis, D. E. (2014). Clinical manifestations of cerebellar disease. Neurologic Clinics, 32(4), 871–879. https://doi.org/10.1016/j.ncl.2014.07.012
Vijiaratnam, N., Wirth, T., & Morris, H. R. (2020). Revisiting the assessment of tremor: Clinical review. The British Journal of General Practice, 70(701), 611–614. https://doi.org/10.3399/bjgp20X713849
Kestenbaum, M., Michalec, M., Yu, Q., Pullman, S. L., & Louis, E. D. (2014). Intention tremor of the legs in essential tremor: Prevalence and clinical correlates. Movement Disorders Clinical Practice, 2(1), 24–28. https://doi.org/10.1002/mdc3.12099
Deuschl, G., Wenzelburger, R., Löffler, K., Raethjen, J., & Stolze, H. (2000). Essential tremor and cerebellar dysfunction clinical and kinematic analysis of intention tremor. Brain: A Journal of Neurology, 123 ( Pt 8), 1568–1580. https://doi.org/10.1093/brain/123.8.1568
Elble, R., Bain, P., Forjaz, M. J., Haubenberger, D., Testa, C., Goetz, C. G., Leentjens, A. F. G., Martinez-Martin, P., Pavy-Le Traon, A., Post, B., Sampaio, C., Stebbins, G. T., Weintraub, D., & Schrag, A. (2013). Task force report: Scales for screening and evaluating tremor: critique and recommendations. Movement Disorders: Official Journal of the Movement Disorder Society, 28(13), 1793–1800. https://doi.org/10.1002/mds.25648
Rocha Cabrero, F., & De Jesus, O. (2023). Intention tremor. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK560642/
Ataxia
Gagnon, C., Mathieu, J., & Desrosiers, J. (2004). Standardized finger-nose test validity for coordination assessment in an ataxic disorder. The Canadian Journal of Neurological Sciences. Le Journal Canadien Des Sciences Neurologiques, 31(4), 484–489. https://doi.org/10.1017/s031716710000367x
Trouillas, P., Takayanagi, T., Hallett, M., Currier, R. D., Subramony, S. H., Wessel, K., Bryer, A., Diener, H. C., Massaquoi, S., Gomez, C. M., Coutinho, P., Ben Hamida, M., Campanella, G., Filla, A., Schut, L., Timann, D., Honnorat, J., Nighoghossian, N., & Manyam, B. (1997). International cooperative ataxia rating scale for pharmacological assessment of the cerebellar syndrome. The ataxia neuropharmacology committee of the world federation of neurology. Journal of the Neurological Sciences, 145(2), 205–211. https://doi.org/10.1016/s0022-510x(96)00231-6
http://www.ataxia-study-group.net/html/about/ataxiascales/sara/SARA.pdf
*PDF of Scale for the assessment and rating of ataxia (SARA) for Finger to Nose Test
Honda, T., Mitoma, H., Yoshida, H., Bando, K., Terashi, H., Taguchi, T., Miyata, Y., Kumada, S., Hanakawa, T., Aizawa, H., Yano, S., Kondo, T., Mizusawa, H., Manto, M., & Kakei, S. (2020). Assessment and rating of motor cerebellar ataxias with the kinect v2 depth sensor: Extending our appraisal. Frontiers in Neurology, 11, 179. https://doi.org/10.3389/fneur.2020.00179
Mohammadi-Ghazi, R., Nguyen, H., Mishra, R. K., Enriquez, A., Najafi, B., Stephen, C. D., Gupta, A. S., Schmahmann, J. D., & Vaziri, A. (2022). Objective assessment of upper-extremity motor functions in spinocerebellar ataxia using wearable sensors. Sensors (Basel, Switzerland), 22(20), 7993. https://doi.org/10.3390/s22207993
Kashyap, B., Phan, D., Pathirana, P. N., Horne, M., Power, L., & Szmulewicz, D. (2020). Objective assessment of cerebellar ataxia: A comprehensive and refined approach. Scientific Reports, 10, 9493. https://doi.org/10.1038/s41598-020-65303-7
Zhang, Q., Zhou, X., Li, Y., Yang, X., & Abbasi, Q. H. (2021). Clinical recognition of sensory ataxia and cerebellar ataxia. Frontiers in Human Neuroscience, 15, 639871. https://doi.org/10.3389/fnhum.2021.639871
Schmahmann, J. D., Gardner, R., MacMore, J., & Vangel, M. G. (2009). Development of a brief ataxia rating scale (Bars) based on a modified form of the icars. Movement Disorders : Official Journal of the Movement Disorder Society, 24(12), 1820–1828. https://doi.org/10.1002/mds.22681
Saute, J. A. M., Donis, K. C., Serrano-Munuera, C., Genis, D., Ramirez, L. T., Mazzetti, P., Pérez, L. V., Latorre, P., Sequeiros, J., Matilla-Dueñas, A., Jardim, L. B., & Iberoamerican Multidisciplinary Network for the Study of Movement Disorders (RIBERMOV) Study Group. (2012). Ataxia rating scales—Psychometric profiles, natural history and their application in clinical trials. Cerebellum (London, England), 11(2), 488–504. https://doi.org/10.1007/s12311-011-0316-8
Hafiz, S., & De Jesus, O. (2023). Ataxia. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK562284/
Bonthius, D. J. (2011). Ataxia and the cerebellum. Seminars in Pediatric Neurology, 18(2), 69–71. https://doi.org/10.1016/j.spen.2011.05.001
Neurorehabilitation Resources
Neurorehabilitation Resources
McDowell, J. E., Dyckman, K. A., Austin, B., & Clementz, B. A. (2008). Neurophysiology and neuroanatomy of reflexive and volitional saccades: Evidence from studies of humans. Brain and Cognition, 68(3), 255–270. https://doi.org/10.1016/j.bandc.2008.08.016
Mena-Garcia, L., Pastor-Jimeno, J. C., Maldonado, M. J., Coco-Martin, M. B., Fernandez, I., & Arenillas, J. F. (2021). Multitasking compensatory saccadic training program for hemianopia patients: A new approach with 3-dimensional real-world objects. Translational Vision Science & Technology, 10(2), 3. https://doi.org/10.1167/tvst.10.2.3
Hubbard, I. J., Carey, L. M., Budd, T. W., Levi, C., McElduff, P., Hudson, S., Bateman, G., & Parsons, M. W. (2015). A randomized controlled trial of the effect of early upper-limb training on stroke recovery and brain activation. Neurorehabilitation and Neural Repair, 29(8), 703–713. https://doi.org/10.1177/1545968314562647
Israely, S., Leisman, G., & Carmeli, E. (2017). Improvement in arm and hand function after a stroke with task-oriented training. BMJ Case Reports, 2017, bcr2017219250. https://doi.org/10.1136/bcr-2017-219250
Térémetz, M., Colle, F., Hamdoun, S., Maier, M. A., & Lindberg, P. G. (2015). A novel method for the quantification of key components of manual dexterity after stroke. Journal of NeuroEngineering and Rehabilitation, 12, 64. https://doi.org/10.1186/s12984-015-0054-0
Spironelli, C., & Borella, E. (2021). Working memory training and cortical arousal in healthy older adults: A resting-state eeg pilot study. Frontiers in Aging Neuroscience, 13, 718965. https://doi.org/10.3389/fnagi.2021.718965
Barnes, J. J., Nobre, A. C., Woolrich, M. W., Baker, K., & Astle, D. E. (2016). Training working memory in childhood enhances coupling between frontoparietal control network and task-related regions. The Journal of Neuroscience, 36(34), 9001–9011. https://doi.org/10.1523/JNEUROSCI.0101-16.2016
Hartmann, L., Sallard, E., & Spierer, L. (2016). Enhancing frontal top-down inhibitory control with Go/NoGo training. Brain Structure and Function, 221(7), 3835–3842. https://doi.org/10.1007/s00429-015-1131-7
Simmonds, D. J., Pekar, J. J., & Mostofsky, S. H. (2008). Meta-analysis of Go/No-go tasks demonstrating that fMRI activation associated with response inhibition is task-dependent. Neuropsychologia, 46(1), 224–232. https://doi.org/10.1016/j.neuropsychologia.2007.07.015
Heflin, L. H., Laluz, V., Jang, J., Ketelle, R., Miller, B. L., & Kramer, J. H. (2011). Let’s inhibit our excitement: The relationships between stroop, behavioral disinhibition, and the frontal lobes. Neuropsychology, 25(5), 655–665. https://doi.org/10.1037/a0023863
Demakis, G. J. (2004). Frontal lobe damage and tests of executive processing: A meta-analysis of the category test, stroop test, and trail-making test. Journal of Clinical and Experimental Neuropsychology, 26(3), 441–450. https://doi.org/10.1080/13803390490510149
Giel, K. E., Schag, K., Plewnia, C., & Zipfel, S. (2013). Antisaccadic training to improve impulsivity in binge eating disorder. European Eating Disorders Review: The Journal of the Eating Disorders Association, 21(6), 488–492. https://doi.org/10.1002/erv.2245
Malsert, J., Guyader, N., Chauvin, A., Polosan, M., Poulet, E., Szekely, D., Bougerol, T., & Marendaz, C. (2012). Antisaccades as a follow-up tool in major depressive disorder therapies: A pilot study. Psychiatry Research, 200(2–3), 1051–1053. https://doi.org/10.1016/j.psychres.2012.05.007
Kerkhoff, G., Reinhart, S., Ziegler, W., Artinger, F., Marquardt, C., & Keller, I. (2013). Smooth pursuit eye movement training promotes recovery from auditory and visual neglect: A randomized controlled study. Neurorehabilitation and Neural Repair, 27(9), 789–798. https://doi.org/10.1177/1545968313491012
Keller, I., Lefin-Rank, G., Lösch, J., & Kerkhoff, G. (2009). Combination of pursuit eye movement training with prism adaptation and arm movements in neglect therapy: A pilot study. Neurorehabilitation and Neural Repair, 23(1), 58–66. https://doi.org/10.1177/1545968308317438
Kerkhoff, G., Keller, I., Artinger, F., Hildebrandt, H., Marquardt, C., Reinhart, S., & Ziegler, W. (2012). Recovery from auditory and visual neglect after optokinetic stimulation with pursuit eye movements – Transient modulation and enduring treatment effects. Neuropsychologia, 50(6), 1164–1177. https://doi.org/10.1016/j.neuropsychologia.2011.09.032
Bolognini, N., Russo, C., & Edwards, D. J. (2016). The sensory side of post-stroke motor rehabilitation. Restorative Neurology and Neuroscience, 34(4), 571–586. https://doi.org/10.3233/RNN-150606
Pearson, H. J. (2009). Present and accounted for: Sensory stimulation and parietal neuroplasticity. Journal of EMDR Practice and Research, 3(1), 39–49. https://doi.org/10.1891/1933-3196.3.1.39
Smania, N., Montagnana, B., Faccioli, S., Fiaschi, A., & Aglioti, S. M. (2003). Rehabilitation of somatic sensation and related deficit of motor control in patients with pure sensory stroke. Archives of Physical Medicine and Rehabilitation, 84(11), 1692–1702. https://doi.org/10.1053/S0003-9993(03)00277-6
Millot, S., Beis, J.-M., Pierret, J., Badin, M., Sabau, V., Bensoussan, L., Paysant, J., & Ceyte, H. (2023). Innovative therapy combining neck muscle vibration and transcranial direct current stimulation in association with conventional rehabilitation in left unilateral spatial neglect patients: Hemistim protocol for a randomized controlled trial. Brain Sciences, 13(4), 678. https://doi.org/10.3390/brainsci13040678
Pelletier, R., Bourbonnais, D., Higgins, J., Mireault, M., Danino, M. A., & Harris, P. G. (2018). Left right judgement task and sensory, motor, and cognitive assessment in participants with wrist/hand pain. Rehabilitation Research and Practice, 2018, 1530245. https://doi.org/10.1155/2018/1530245
Auer, T., Schwarcz, A., Aradi, M., Kalmár, Z., Pendleton, C., Janszky, I., Horváth, R. A., Szalay, C., Dóczi, T., Komoly, S., & Janszky, J. (2008). Right-left discrimination is related to the right hemisphere. Laterality, 13(5), 427–438. https://doi.org/10.1080/13576500802114120
Alwashmi, K., Meyer, G., & Rowe, F. J. (2022). Audio-visual stimulation for visual compensatory functions in stroke survivors with visual field defect: A systematic review. Neurological Sciences, 43(4), 2299–2321. https://doi.org/10.1007/s10072-022-05926-y
Watanabe, H., Homae, F., & Taga, G. (2012). Activation and deactivation in response to visual stimulation in the occipital cortex of 6-month-old human infants. Developmental Psychobiology, 54(1), 1–15. https://doi.org/10.1002/dev.20569
Ajina, S., & Kennard, C. (2012). Rehabilitation of damage to the visual brain. Revue Neurologique, 168(10), 754–761. https://doi.org/10.1016/j.neurol.2012.07.015
El Haj, M., Kessels, R. P. C., & Allain, P. (2016). Source memory rehabilitation: A review toward recommendations for setting up a strategy training aimed at the “what, where, and when” of episodic retrieval. Applied Neuropsychology: Adult, 23(1), 53–60. https://doi.org/10.1080/23279095.2014.992071
Ptak, R., der Linden, M. V., & Schnider, A. (2010). Cognitive rehabilitation of episodic memory disorders: From theory to practice. Frontiers in Human Neuroscience, 4, 57. https://doi.org/10.3389/fnhum.2010.00057
Sandberg, P., Boraxbekk, C.-J., Zogaj, I., & Nyberg, L. (2021). Ancient mnemonic in new format—Episodic memory training with the method of loci in a smart phone application. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 76(4), 681–691. https://doi.org/10.1093/geronb/gbaa216
Millot, S., Beis, J.-M., Pierret, J., Badin, M., Sabau, V., Bensoussan, L., Paysant, J., & Ceyte, H. (2023). Innovative therapy combining neck muscle vibration and transcranial direct current stimulation in association with conventional rehabilitation in left unilateral spatial neglect patients: Hemistim protocol for a randomized controlled trial. Brain Sciences, 13(4), 678. https://doi.org/10.3390/brainsci13040678
Van Lancker Sidtis, D., Cameron, K., & Sidtis, J. J. (2012). Dramatic effects of speech task on motor and linguistic planning in severely dysfluent parkinsonian speech. Clinical Linguistics & Phonetics, 26(8), 695–711. https://doi.org/10.3109/02699206.2012.696307
Narayana, S., Franklin, C., Peterson, E., Hunter, E. J., Robin, D. A., Halpern, A., Spielman, J., Fox, P. T., & Ramig, L. O. (2022). Immediate and long‐term effects of speech treatment targets and intensive dosage on Parkinson’s disease dysphonia and the speech motor network: Randomized controlled trial. Human Brain Mapping, 43(7), 2328. https://doi.org/10.1002/hbm.25790
Bate, S., Dalrymple, K., & Bennetts, R. J. (2022). Face recognition improvements in adults and children with face recognition difficulties. Brain Communications, 4(2), fcac068. https://doi.org/10.1093/braincomms/fcac068
Davies-Thompson, J., Fletcher, K., Hills, C., Pancaroglu, R., Corrow, S. L., & Barton, J. J. S. (2017). Perceptual learning of faces: A rehabilitative study of acquired prosopagnosia. Journal of Cognitive Neuroscience, 29(3), 573–591. https://doi.org/10.1162/jocn_a_01063
Ilg, W., Brötz, D., Burkard, S., Giese, M. A., Schöls, L., & Synofzik, M. (2010). Long-term effects of coordinative training in degenerative cerebellar disease. Movement Disorders, 25(13), 2239–2246. https://doi.org/10.1002/mds.23222
Ilg, W., Synofzik, M., Brotz, D., Burkard, S., Giese, M. A., & Schols, L. (2009). Intensive coordinative training improves motor performance in degenerative cerebellar disease. Neurology, 73(22), 1823–1830. https://doi.org/10.1212/WNL.0b013e3181c33adf
Bastian, A., & Keller, J. L. (2014). A home balance exercise program improves walking in people with cerebellar ataxia. Neurorehabilitation and Neural Repair, 28(8), 770–778. https://doi.org/10.1177/1545968314522350
Balliet, R., Harbst, K. B., Kim, D., & Stewart, R. V. (1987). Retraining of functional gait through the reduction of upper extremity weight-bearing in chronic cerebellar ataxia. International Rehabilitation Medicine, 8(4), 148–153. https://doi.org/10.3109/03790798709166204
Im, S.-J., Kim, Y.-H., Kim, K.-H., Han, J.-W., Yoon, S.-J., & Park, J.-H. (2017). The effect of a task-specific locomotor training strategy on gait stability in patients with cerebellar disease: A feasibility study. Disability and Rehabilitation, 39(10), 1002–1008. https://doi.org/10.1080/09638288.2016.1177124
Cernak, K., Stevens, V., Price, R., & Shumway-Cook, A. (2008). Locomotor training using body-weight support on a treadmill in conjunction with ongoing physical therapy in a child with severe cerebellar ataxia. Physical Therapy, 88(1), 88–97. https://doi.org/10.2522/ptj.20070134
Barbuto, S., Kuo, S.-H., Winterbottom, L., Lee, S., Stern, Y., O’Dell, M., & Stein, J. (2023). Home aerobic training for cerebellar degenerative diseases: A randomized controlled trial. Cerebellum (London, England), 22(2), 272–281. https://doi.org/10.1007/s12311-022-01394-4
Yorkston, K. M., & Beukelman, D. R. (1981). Ataxic dysarthria: Treatment sequences based on intelligibility and prosodic considerations. The Journal of Speech and Hearing Disorders, 46(4), 398–404. https://doi.org/10.1044/jshd.4604.398
Kent, R. D., Kent, J. F., Rosenbek, J. C., Vorperian, H. K., & Weismer, G. (1997). A speaking task analysis of the dysarthria in cerebellar disease. Folia Phoniatrica et Logopaedica, 49(2), 63–82. https://doi.org/10.1159/000266440
Ackermann, H. (2013). The contribution of the cerebellum to speech and language. Brain and Language, 127(3), 315–316. https://doi.org/10.1016/j.bandl.2013.10.006
The Neurology of Eye Movements
(Contemporary Neurology Series) 5th Edition by John R.Leigh, David S. Zee
Identifying the Neurological Pathways
John R.Leigh, MD
Professor Emeritus, Department of Neurology, Case Western Reserve University, School of Medicine
Residencies, Internships and Fellowships
Fellowship: Neurology
The Johns Hopkins Hospital
Residency: Neurology
Cornell Medical Center
Research Fellowship: Neurology
Newcastle University
Board Certification:
- Royal College of Physicians, United Kingdom
- American Board of Psychiatry and Neurology
David S. Zee, MD
Dr. David Zee specializes in vertigo, dizzinessand imbalance (including ataxia) and in disorders of eye movements (including nystagmus and strabismus). He is a Professor of Neurology with secondary appointments in Otolaryngology-Head and Neck Surgery, Ophthalmology and Neuroscience.
Dr. David Zee received his medical degree from The Johns Hopkins University School of Medicine in Baltimore, Maryland. He completed residency training in Neurology at the Johns Hopkins Hospital and pursued additional clinical training at the National Institutes of Health.